Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Front Neurol ; 15: 1362013, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572490

RESUMEN

Alexander disease (AxD) is a rare inherited autosomal dominant (AD) disease with different clinical phenotypes according to the age of onset. It is caused by mutations in the glial fibrillary acid protein (GFAP) gene, which causes GFAP accumulation in astrocytes. A wide spectrum of mutations has been described. For some variants, genotype-phenotype correlations have been described, although variable expressivity has also been reported in late-onset cases among members of the same family. We present the case of a 19-year-old girl who developed gait ataxia and subtle involuntary movements, preceded by a history of enuresis and severe scoliosis. Her mother has been affected by ataxia since her childhood, which was then complicated by pyramidal signs and heavily worsened through the years. Beyond her mother, no other known relatives suffered from neurologic syndromes. The scenario was further complicated by a complex brain and spinal cord magnetic resonance imaging (MRI) pattern in both mother and daughter. However, the similar clinical phenotype made an inherited cause highly probable. Both AD and autosomal recessive (AR) ataxic syndromes were considered, lacking a part of the proband's pedigree, but no causative genetic alterations were found. Considering the strong suspicion for an inherited condition, we performed clinical exome sequencing (CES), which analyzes more than 4,500 genes associated with diseases. CES evidenced the new heterozygous missense variant c.260 T > A in exon 1 of the glial fibrillary acidic protein (GFAP) gene (NM_002055.4), which causes the valine to aspartate amino acid substitution at codon 87 (p. Val87Asp) in the GFAP. The same heterozygous variant was detected in her mother. This mutation has never been described before in the literature. This case should raise awareness for this rare and under-recognized disease in juvenile-adult cases.

2.
Am J Hum Genet ; 111(3): 594-613, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38423010

RESUMEN

The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.


Asunto(s)
Epilepsia Generalizada , Atrofia Óptica , Animales , Humanos , Niño , Pez Cebra/genética , Atrofia Óptica/genética , Fenotipo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética
4.
Neurol Sci ; 45(3): 1007-1016, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37853291

RESUMEN

BACKGROUND: Transition from child-centered to adult-centered healthcare is a gradual process that addresses the medical, psychological, and educational needs of young people in the management of their autonomy in making decisions about their health and their future clinical assistance. This transfer is challenging across all chronic diseases but can be particularly arduous in rare neurological conditions. AIM: To describe the current practice on the transition process for young patients in centers participating in the European Reference Network for Rare Neurological Diseases (ERN-RND). METHODS: Members of the ERN-RND working group developed a questionnaire considering child-to-adult transition issues and procedures in current clinical practice. The questionnaire included 20 questions and was sent to members of the health care providers (HCPs) participating in the network. RESULTS: Twenty ERN-RND members (75% adult neurologists; 25% pediatricians; 5% nurses or study coordinators) responded to the survey, representing 10 European countries. Transition usually occurs between 16 and 18 years of age, but 55% of pediatric HCPs continue to care for their patients until they reach 40 years of age or older. In 5/20 ERN-RND centers, a standardized procedure managing transition is currently adopted, whereas in the remaining centers, the transition from youth to adult service is usually assisted by pediatricians as part of their clinical practice. CONCLUSIONS: This survey demonstrated significant variations in clinical practice between different centers within the ERN-RND network. It provided valuable data on existing transition programs and highlighted key challenges in managing transitions for patients with rare neurological disorders.


Asunto(s)
Atención a la Salud , Enfermedades del Sistema Nervioso , Adulto , Adolescente , Humanos , Niño , Encuestas y Cuestionarios , Europa (Continente) , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/terapia , Enfermedades Raras/diagnóstico , Enfermedades Raras/terapia
5.
Nat Commun ; 14(1): 3403, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296101

RESUMEN

Squamous cell carcinoma antigen recognized by T cells 3 (SART3) is an RNA-binding protein with numerous biological functions including recycling small nuclear RNAs to the spliceosome. Here, we identify recessive variants in SART3 in nine individuals presenting with intellectual disability, global developmental delay and a subset of brain anomalies, together with gonadal dysgenesis in 46,XY individuals. Knockdown of the Drosophila orthologue of SART3 reveals a conserved role in testicular and neuronal development. Human induced pluripotent stem cells carrying patient variants in SART3 show disruption to multiple signalling pathways, upregulation of spliceosome components and demonstrate aberrant gonadal and neuronal differentiation in vitro. Collectively, these findings suggest that bi-allelic SART3 variants underlie a spliceosomopathy which we tentatively propose be termed INDYGON syndrome (Intellectual disability, Neurodevelopmental defects and Developmental delay with 46,XY GONadal dysgenesis). Our findings will enable additional diagnoses and improved outcomes for individuals born with this condition.


Asunto(s)
Disgenesia Gonadal , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual , Masculino , Humanos , Testículo/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Antígenos de Neoplasias
7.
Ann Neurol ; 94(3): 470-485, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37243847

RESUMEN

OBJECTIVE: The Scale for the Assessment and Rating of Ataxia (SARA) is the most widely applied clinical outcome assessment (COA) for genetic ataxias, but presents metrological and regulatory challenges. To facilitate trial planning, we characterize its responsiveness (including subitem-level relations to ataxia severity and patient-focused outcomes) across a large number of ataxias, and provide first natural history data for several of them. METHODS: Subitem-level correlation and distribution-based analysis of 1,637 SARA assessments in 884 patients with autosomal recessive/early onset ataxia (370 with 2-8 longitudinal assessments) were complemented by linear mixed effects modeling to estimate progression and sample sizes. RESULTS: Although SARA subitem responsiveness varied between ataxia severities, gait/stance showed a robust granular linear scaling across the broadest range (SARA < 25). Responsiveness was diminished by incomplete subscale use at intermediate or upper levels, nontransitions ("static periods"), and fluctuating decreases/increases. All subitems except nose-finger showed moderate-to-strong correlations to activities of daily living, indicating that metric properties-not content validity-limit SARA responsiveness. SARA captured mild-to-moderate progression in many genotypes (eg, SYNE1-ataxia: 0.55 points/yr, ataxia with oculomotor apraxia type 2: 1.14 points/yr, POLG-ataxia: 1.56 points/yr), but no change in others (autosomal recessive spastic ataxia of Charlevoix-Saguenay, COQ8A-ataxia). Whereas sensitivity to change was optimal in mild ataxia (SARA < 10), it substantially deteriorated in advanced ataxia (SARA > 25; 2.7-fold sample size). Use of a novel rank-optimized SARA without subitems finger-chase and nose-finger reduces sample sizes by 20 to 25%. INTERPRETATION: This study comprehensively characterizes COA properties and annualized changes of the SARA across and within a large number of ataxias. It suggests specific approaches for optimizing its responsiveness that might facilitate regulatory qualification and trial design. ANN NEUROL 2023;94:470-485.


Asunto(s)
Ataxia Cerebelosa , Ataxias Espinocerebelosas , Humanos , Actividades Cotidianas , Ataxia , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/genética , Extremidad Superior
9.
Mov Disord Clin Pract ; 10(1): 124-129, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36704080

RESUMEN

Background: Ataxia-telangiectasia (A-T) is a progressive multisystemic neurodegenerative disease. The phenotypic spectrum includes conditions (variant A-T) with mild, late-onset, and atypical clinical presentations characterized by the prevalence of dyskinetic rather than ataxic features. Cases: We describe the clinical presentations of 3 siblings with early-onset truncal ataxia without obvious neurological deterioration or biological markers of classic A-T phenotype. We performed functional and genetic evaluation of 3 siblings with very mild neurological phenotype. Genetic evaluation with a next-generation sequencing panel for genes causative of cerebellar ataxia detected 2 known ATM gene variants, missense c.9023G>A p.(Arg3008His), and leaky splicing c.1066-6T>G variants. Functional studies showed mildly reduced ATM expression and residual kinase activity in the probands compared with healthy controls. Conclusions: These results suggest the importance of investigating ATM variants even in the presence of clinical and biological atypical cases to ensure specific therapeutic regimens and oncological surveillance in these patients.

10.
Dev Med Child Neurol ; 65(4): 544-550, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36175354

RESUMEN

AIM: To assess whether microcephaly with pontine and cerebellar hypoplasia (MICPCH) could manifest in the prenatal period in patients with calcium/calmodulin-dependent serine protein kinase (CASK) gene disorders. METHOD: In this international multicentre retrospective study, we contacted a CASK parents' social media group and colleagues with expertise in cerebellar malformations and asked them to supply clinical and imaging information. Centiles and standard deviations (SD) were calculated according to age by nomograms. RESULTS: The study consisted of 49 patients (44 females and 5 males). Information regarding prenatal head circumference was available in 19 patients; 11 out of 19 had a fetal head circumference below -2SD (range -4.1SD to -2.02SD, mean gestational age at diagnosis 20 weeks). Progressive prenatal deceleration of head circumference growth rate was observed in 15 out of 19. At birth, 20 out of 42 had a head circumference below -2SD. A total of 6 out of 15 fetuses had a TCD z-score below -2 (range -5.88 to -2.02). INTERPRETATION: This study expands the natural history of CASK-related disorders to the prenatal period, showing evidence of progressive deceleration of head circumference growth rate, head circumference below -2SD, or small TCD. Most cases will not be diagnosed according to current recommendations for fetal central nervous system routine assessment. Consecutive measurements and genetic studies are advised in the presence of progressive deceleration of head circumference growth rates or small TCD. WHAT THIS PAPER ADDS: Progressive deceleration of fetal head circumference growth rate can be observed. A small transcerebellar diameter is an additional important manifestation. Most cases will not be diagnosed according to current recommendations for fetal central nervous system routine assessment. Consecutive measurements are advised when measurements are within the low range of norm.


Asunto(s)
Microcefalia , Malformaciones del Sistema Nervioso , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Embarazo , Feto , Edad Gestacional , Microcefalia/diagnóstico , Malformaciones del Sistema Nervioso/genética , Estudios Retrospectivos
11.
Front Psychiatry ; 14: 1327802, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38288059

RESUMEN

Introduction: X-linked PTCHD1 gene has recently been pointed as one of the most interesting candidates for involvement in neurodevelopmental disorders (NDs), such as intellectual disability (ID) and autism spectrum disorder (ASD). PTCHD1 encodes the patched domain-containing protein 1 (PTCHD1), which is mainly expressed in the developing brain and adult brain tissues. To date, major studies have focused on the biological function of the PTCHD1 gene, while the mechanisms underlying neuronal alterations and the cognitive-behavioral phenotype associated with mutations still remain unclear. Methods: With the aim of incorporating information on the clinical profile of affected individuals and enhancing the characterization of the genotype-phenotype correlation, in this study, we analyze the clinical features of four individuals (two children and two adults) in which array-CGH detected a PTCHD1 deletion or in which panel for screening non-syndromal XLID (X-linked ID) detected a PTCHD1 gene variant. We define the neuropsychological and psychopathological profiles, providing quantitative data from standardized evaluations. The assessment consisted of clinical observations, structured interviews, and parent/self-reported questionnaires. Results: Our descriptive analysis align with previous findings on the involvement of the PTCHD1 gene in NDs. Specifically, our patients exhibited a clinical phenotype characterized by psychomotor developmental delay- ID of varying severity. Interestingly, while ID during early childhood was associated with autistic-like symptomatology, this interrelation was no longer observed in the adult subjects. Furthermore, our cohort did not display peculiar dysmorphic features, congenital abnormalities or comorbidity with epilepsy. Discussion: Our analysis shows that the psychopathological and behavioral comorbidities along with cognitive impairment interfere with development, therefore contributing to the severity of disability associated with PTCHD1 gene mutation. Awareness of this profile by professionals and caregivers can promote prompt diagnosis as well as early cognitive and occupational enhancement interventions.

12.
Cell Death Dis ; 13(10): 855, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207321

RESUMEN

Calcium concentration must be finely tuned in all eukaryotic cells to ensure the correct performance of its signalling function. Neuronal activity is exquisitely dependent on the control of Ca2+ homeostasis: its alterations ultimately play a pivotal role in the origin and progression of many neurodegenerative processes. A complex toolkit of Ca2+ pumps and exchangers maintains the fluctuation of cytosolic Ca2+ concentration within the appropriate threshold. Two ubiquitous (isoforms 1 and 4) and two neuronally enriched (isoforms 2 and 3) of the plasma membrane Ca2+ATPase (PMCA pump) selectively regulate cytosolic Ca2+ transients by shaping the sub-plasma membrane (PM) microdomains. In humans, genetic mutations in ATP2B1, ATP2B2 and ATP2B3 gene have been linked with hearing loss, cerebellar ataxia and global neurodevelopmental delay: all of them were found to impair pump activity. Here we report three additional mutations in ATP2B3 gene corresponding to E1081Q, R1133Q and R696H amino acids substitution, respectively. Among them, the novel missense mutation (E1081Q) immediately upstream the C-terminal calmodulin-binding domain (CaM-BD) of the PMCA3 protein was present in two patients originating from two distinct families. Our biochemical and molecular studies on PMCA3 E1081Q mutant have revealed a splicing variant-dependent effect of the mutation in shaping the sub-PM [Ca2+]. The E1081Q substitution in the full-length b variant abolished the capacity of the pump to reduce [Ca2+] in the sub-PM microdomain (in line with the previously described ataxia-related PMCA mutations negatively affecting Ca2+ pumping activity), while, surprisingly, its introduction in the truncated a variant selectively increased Ca2+ extrusion activity in the sub-PM Ca2+ microdomains. These results highlight the importance to set a precise threshold of [Ca2+] by fine-tuning the sub-PM microdomains and the different contribution of the PMCA splice variants in this regulation.


Asunto(s)
Ataxia Cerebelosa , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Aminoácidos , Ataxia/genética , Ataxia/metabolismo , Calcio/metabolismo , Calmodulina/genética , Membrana Celular/metabolismo , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/metabolismo , Humanos , Mutación/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/química , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
13.
Cell Mol Life Sci ; 79(10): 526, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36136249

RESUMEN

CAPRIN1 is a ubiquitously expressed protein, abundant in the brain, where it regulates the transport and translation of mRNAs of genes involved in synaptic plasticity. Here we describe two unrelated children, who developed early-onset ataxia, dysarthria, cognitive decline and muscle weakness. Trio exome sequencing unraveled the identical de novo c.1535C > T (p.Pro512Leu) missense variant in CAPRIN1, affecting a highly conserved residue. In silico analyses predict an increased aggregation propensity of the mutated protein. Indeed, overexpressed CAPRIN1P512L forms insoluble ubiquitinated aggregates, sequestrating proteins associated with neurodegenerative disorders (ATXN2, GEMIN5, SNRNP200 and SNCA). Moreover, the CAPRIN1P512L mutation in isogenic iPSC-derived cortical neurons causes reduced neuronal activity and altered stress granule dynamics. Furthermore, nano-differential scanning fluorimetry reveals that CAPRIN1P512L aggregation is strongly enhanced by RNA in vitro. These findings associate the gain-of-function Pro512Leu mutation to early-onset ataxia and neurodegeneration, unveiling a critical residue of CAPRIN1 and a key role of RNA-protein interactions.


Asunto(s)
Proteínas de Ciclo Celular , Agregado de Proteínas , Ataxia , Proteínas de Ciclo Celular/metabolismo , Niño , Humanos , Mutación , ARN Mensajero/metabolismo
14.
Antioxidants (Basel) ; 11(8)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35892638

RESUMEN

SCA1, SCA2, and SCA3 are the most common forms of SCAs among the polyglutamine disorders, which include Huntington's Disease (HD). We investigated the relationship between leukocyte telomere length (LTL) and the phenotype of SCA1, SCA2, and SCA3, comparing them with HD. The results showed that LTL was significantly reduced in SCA1 and SCA3 patients, while LTL was significantly longer in SCA2 patients. A significant negative relationship between LTL and age was observed in SCA1 but not in SCA2 subjects. LTL of SCA3 patients depend on both patient's age and disease duration. The number of CAG repeats did not affect LTL in the three SCAs. Since LTL is considered an indirect marker of an inflammatory response and oxidative damage, our data suggest that in SCA1 inflammation is present already at an early stage of disease similar to in HD, while in SCA3 inflammation and impaired antioxidative processes are associated with disease progression. Interestingly, in SCA2, contrary to SCA1 and SCA3, the length of leukocyte telomeres does not reduce with age. We have observed that SCAs and HD show a differing behavior in LTL for each subtype, which could constitute relevant biomarkers if confirmed in larger cohorts and longitudinal studies.

15.
Am J Med Genet A ; 188(10): 3032-3040, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35876338

RESUMEN

Hemizygous missense variants in the RPL10 gene encoding a ribosomal unit are responsible for an X-linked syndrome presenting with intellectual disability (ID), autism spectrum disorder, epilepsy, dysmorphic features, and multiple congenital anomalies. Among 15 individuals with RPL10-related disorder reported so far, only one patient had retinitis pigmentosa and microcephaly was observed in approximately half of the cases. By exome sequencing, three Italian and one Spanish male children, from three independent families, were found to carry the same hemizygous novel missense variant p.(Arg32Leu) in RPL10, inherited by their unaffected mother in all cases. The variant, not reported in gnomAD, is located in the 28S rRNA binding region, affecting an evolutionary conserved residue and predicted to disrupt the salt-bridge between Arg32 and Asp28. In addition to features consistent with RPL10-related disorder, all four boys had retinal degeneration and postnatal microcephaly. Pathogenic variants in genes responsible for inherited retinal degenerations were ruled out in all the probands. A novel missense RPL10 variant was detected in four probands with a recurrent phenotype including ID, dysmorphic features, progressive postnatal microcephaly, and retinal anomalies. The presented individuals suggest that retinopathy and postnatal microcephaly are clinical clues of RPL10-related disorder, and at least the retinal defect might be more specific for the p.(Arg32Leu) RPL10 variant, suggesting a specific genotype/phenotype correlation.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Microcefalia , Malformaciones del Sistema Nervioso , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Microcefalia/genética , Microcefalia/patología , Fenotipo
16.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743164

RESUMEN

The inositol 1,4,5-triphosphate receptor type 1 (ITPR1) gene encodes an InsP3-gated calcium channel that modulates intracellular Ca2+ release and is particularly expressed in cerebellar Purkinje cells. Pathogenic variants in the ITPR1 gene are associated with different types of autosomal dominant spinocerebellar ataxia: SCA15 (adult onset), SCA29 (early-onset), and Gillespie syndrome. Cerebellar atrophy/hypoplasia is invariably detected, but a recognizable neuroradiological pattern has not been identified yet. With the aim of describing ITPR1-related neuroimaging findings, the brain MRI of 14 patients with ITPR1 variants (11 SCA29, 1 SCA15, and 2 Gillespie) were reviewed by expert neuroradiologists. To further evaluate the role of superior vermian and hemispheric cerebellar atrophy as a clue for the diagnosis of ITPR1-related conditions, the ITPR1 gene was sequenced in 5 patients with similar MRI pattern, detecting pathogenic variants in 4 of them. Considering the whole cohort, a distinctive neuroradiological pattern consisting in superior vermian and hemispheric cerebellar atrophy was identified in 83% patients with causative ITPR1 variants, suggesting this MRI finding could represent a hallmark for ITPR1-related disorders.


Asunto(s)
Inositol , Adulto , Atrofia , Cerebelo/anomalías , Discapacidades del Desarrollo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Malformaciones del Sistema Nervioso , Linaje , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas
17.
Ann Neurol ; 92(1): 138-153, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35340043

RESUMEN

OBJECTIVE: Collier/Olf/EBF (COE) transcription factors have distinct expression patterns in the developing and mature nervous system. To date, a neurological disease association has been conclusively established for only the Early B-cell Factor-3 (EBF3) COE family member through the identification of heterozygous loss-of-function variants in individuals with autism spectrum/neurodevelopmental disorders (NDD). Here, we identify a symptom severity risk association with missense variants primarily disrupting the zinc finger domain (ZNF) in EBF3-related NDD. METHODS: A phenotypic assessment of 41 individuals was combined with a literature meta-analysis for a total of 83 individuals diagnosed with EBF3-related NDD. Quantitative diagnostic phenotypic and symptom severity scales were developed to compare EBF3 variant type and location to identify genotype-phenotype correlations. To stratify the effects of EBF3 variants disrupting either the DNA-binding domain (DBD) or the ZNF, we used in vivo fruit fly UAS-GAL4 expression and in vitro luciferase assays. RESULTS: We show that patient symptom severity correlates with EBF3 missense variants perturbing the ZNF, which is a key protein domain required for stabilizing the interaction between EBF3 and the target DNA sequence. We found that ZNF-associated variants failed to restore viability in the fruit fly and impaired transcriptional activation. However, the recurrent variant EBF3 p.Arg209Trp in the DBD is capable of partially rescuing viability in the fly and preserved transcriptional activation. INTERPRETATION: We describe a symptom severity risk association with ZNF perturbations and EBF3 loss-of-function in the largest reported cohort to date of EBF3-related NDD patients. This analysis should have potential predictive clinical value for newly identified patients with EBF3 gene variants. ANN NEUROL 2022;92:138-153.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Factores de Transcripción , Dedos de Zinc , Trastorno del Espectro Autista/genética , Humanos , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc/genética
18.
Mov Disord ; 37(6): 1175-1186, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35150594

RESUMEN

BACKGROUND: Pathogenic variants in SPTAN1 have been linked to a remarkably broad phenotypical spectrum. Clinical presentations include epileptic syndromes, intellectual disability, and hereditary motor neuropathy. OBJECTIVES: We investigated the role of SPTAN1 variants in rare neurological disorders such as ataxia and spastic paraplegia. METHODS: We screened 10,000 NGS datasets across two international consortia and one local database, indicative of the level of international collaboration currently required to identify genes causative for rare disease. We performed in silico modeling of the identified SPTAN1 variants. RESULTS: We describe 22 patients from 14 families with five novel SPTAN1 variants. Of six patients with cerebellar ataxia, four carry a de novo SPTAN1 variant and two show a sporadic inheritance. In this group, one variant (p.Lys2083del) is recurrent in four patients. Two patients have novel de novo missense mutations (p.Arg1098Cys, p.Arg1624Cys) associated with cerebellar ataxia, in one patient accompanied by intellectual disability and epilepsy. We furthermore report a recurrent missense mutation (p.Arg19Trp) in 15 patients with spastic paraplegia from seven families with a dominant inheritance pattern in four and a de novo origin in one case. One further patient carrying a de novo missense mutation (p.Gln2205Pro) has a complex spastic ataxic phenotype. Through protein modeling we show that mutated amino acids are located at crucial interlinking positions, interconnecting the three-helix bundle of a spectrin repeat. CONCLUSIONS: We show that SPTAN1 is a relevant candidate gene for ataxia and spastic paraplegia. We suggest that for the mutations identified in this study, disruption of the interlinking of spectrin helices could be a key feature of the pathomechanism. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Proteínas Portadoras , Ataxia Cerebelosa , Discapacidad Intelectual , Proteínas de Microfilamentos , Paraplejía Espástica Hereditaria , Proteínas Portadoras/genética , Ataxia Cerebelosa/genética , Humanos , Discapacidad Intelectual/genética , Proteínas de Microfilamentos/genética , Mutación/genética , Paraplejía/genética , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/genética , Espectrina/genética
19.
Artículo en Inglés | MEDLINE | ID: mdl-35162247

RESUMEN

Cerebellar agenesis is an extremely rare condition characterized by a near complete absence of the cerebellum. The pathogenesis and molecular basis remain mostly unknown. We report the neuroradiological, molecular, neuropsychological and behavioral characterization of a 5-year-old girl, with cerebellar agenesis associated with parietal and peri-Sylvian polymicrogyria, followed-up for 10 years at four time points. Whole exome sequencing identified two rare variants in CSMD1, a gene associated with neurocognitive and psychiatric alterations. Mild intellectual impairment, cerebellar ataxia and deficits in language, memory and executive functions, with relatively preserved adaptive and psychopathological domains, were initially showed. Phonological awareness and verbal memory declined at 11 years of age, and social and anxiety problems emerged. Adaptive and psychopathological characteristics dramatically worsened at 15 years. In summary, the developmental clinical outcome showed impairment in multiple cognitive functions in childhood, with a progressive decline in cognitive and adaptive abilities and the emergence of psychopathological symptoms in adolescence. The observed phenotype could be the result of a complex interplay between cerebellar abnormality, brain malformation and the relations with CSMD1 variants. These findings may provide insights into the developmental clinical outcomes of a co-occurrence between rare brain malformation and rare genetic variants associated to neurodevelopmental disorders.


Asunto(s)
Cerebelo , Trastornos del Conocimiento , Cerebelo/diagnóstico por imagen , Preescolar , Cognición , Trastornos del Conocimiento/etiología , Femenino , Humanos , Proteínas de la Membrana/genética , Memoria , Pruebas Neuropsicológicas , Proteínas Supresoras de Tumor
20.
Brain Sci ; 12(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35203946

RESUMEN

Recessive hereditary methemoglobinemia (RHM) due to NADH-cytochrome b5 reductase deficiency is a rare disease caused by pathogenic variants in CYB5R3. Unlike type I, in RHM type II (RHM2), the enzymatic defect affects erythrocytes and all body tissues, thus resulting in cyanosis and neurological impairment. Although the first description of RHM2 dates back to the mid-1950s, detailed clinical and neuroimaging information are available for only a few patients. Here, we describe a new patient with RHM2 that harbors an unreported homozygous 31 Kb deletion involving part of CYB5R3, and showing a peculiar neuroimaging pattern resembling a ponto-cerebellar hypoplasia-like condition. A careful review of the available literature was performed with the aim of better delineating neurological and neuroimaging as well as the genotypic spectra of this extremely rare disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...